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“I wanna, I wanna, 
I wanna, I wanna, 
I wanna be trash.”

— The Whip, “Trash”

We say Lox is a “high-level” language because it frees programmers from wor-
rying about details irrelevant to the problem they’re solving. The user becomes 
an executive, giving the machine abstract goals and letting the lowly computer 
figure out how to get there.

Dynamic memory allocation is a perfect candidate for automation. It’s neces-
sary for a working program, tedious to do by hand, and yet still error-prone. The 
inevitable mistakes can be catastrophic, leading to crashes, memory corruption, 
or security violations. It’s the kind of risky-yet-boring work that machines excel 
at over humans.

This is why Lox is a managed language, which means that the language 
implementation manages memory allocation and freeing on the user’s behalf. 
When a user performs an operation that requires some dynamic memory, the 
VM automatically allocates it. The programmer never worries about deallocating 
anything. The machine ensures any memory the program is using sticks around 
as long as needed.
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Lox provides the illusion that the computer has an infinite amount of memo-
ry. Users can allocate and allocate and allocate and never once think about where 
all these bytes are coming from. Of course, computers do not yet have infinite 
memory. So the way managed languages maintain this illusion is by going be-
hind the programmer’s back and reclaiming memory that the program no longer 
needs. The component that does this is called a garbage collector.

26.1 Reachability
This raises a surprisingly difficult question: how does a VM tell what memory 
is not needed? Memory is only needed if it is read in the future, but short of 
having a time machine, how can an implementation tell what code the program 
will execute and which data it will use? Spoiler alert: VMs cannot travel into the 
future. Instead, the language makes a conservative approximation: it considers a 
piece of memory to still be in use if it could possibly be read in the future.

That sounds too conservative. Couldn’t any bit of memory potentially be read? 
Actually, no, at least not in a memory-safe language like Lox. Here’s an example:

var a = "first value"; 
a = "updated"; 
// GC here. 
print a;

Say we run the GC after the assignment has completed on the second line. The 
string “first value” is still sitting in memory, but there is no way for the user’s 
program to ever get to it. Once a got reassigned, the program lost any reference 
to that string. We can safely free it. A value is reachable if there is some way for 
a user program to reference it. Otherwise, like the string “first value” here, it is 
unreachable.

Many values can be directly accessed by the VM. Take a look at:

var global = "string"; 
{ 
  var local = "another"; 
  print global + local; 
}

Pause the program right after the two strings have been concatenated but before 
the print statement has executed. The VM can reach "string" by looking 
through the global variable table and finding the entry for global. It can find 
"another" by walking the value stack and hitting the slot for the local variable 
local. It can even find the concatenated string "stringanother" since that 
temporary value is also sitting on the VM’s stack at the point when we paused 
our program.

All of these values are called roots. A root is any object that the VM can reach 
directly without going through a reference in some other object. Most roots are 
global variables or on the stack, but as we’ll see, there are a couple of other places 
the VM stores references to objects that it can find.

Other values can be found by going through a reference inside another value. 
Fields on instances of classes are the most obvious case, but we don’t have those 

Recycling would really be a better meta-
phor for this. The GC doesn’t throw away 
the memory, it reclaims it to be reused 
for new data. But managed languages are 
older than Earth Day, so the inventors 
went with the analogy they knew.

I’m using “conservative” in the general 
sense. There is such a thing as a “conser-
vative garbage collector” which means 
something more specific. All garbage 
collectors are “conservative” in that they 
keep memory alive if it could be accessed, 
instead of having a Magic 8-Ball that lets 
them more precisely know what data will 
be accessed.

A conservative GC is a special kind of 
collector that considers any piece of mem-
ory to be a pointer if the value in there 
looks like it could be an address. This is in 
contrast to a precise GC—which is what 
we’ll implement—that knows exactly 
which words in memory are pointers and 
which store other kinds of values like 
numbers or strings.

We’ll get there soon, though!
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yet. Even without those, our VM still has indirect references. Consider:

fun makeClosure() { 
  var a = "data"; 

  fun f() { print a; } 
  return f; 
} 

{ 
  var closure = makeClosure(); 
  // GC here. 
  closure(); 
}

Say we pause the program on the marked line and run the garbage collector. 
When the collector is done and the program resumes, it will call the closure, 
which will in turn print "data". So the collector needs to not free that string. 
But here’s what the stack looks like when we pause the program:

The "data" string is nowhere on it. It has already been hoisted off the stack 
and moved into the closed upvalue that the closure uses. The closure itself is on 
the stack. But to get to the string, we need to trace through the closure and its 
upvalue array. Since it is possible for the user’s program to do that, all of these 
indirectly accessible objects are also considered reachable.

This gives us an inductive definition of reachability:

•	 All roots are reachable.

•	 Any object referred to from a reachable object is itself reachable.

These are the values that are still “live” and need to stay in memory. Any value 
that doesn’t meet this definition is fair game for the collector to reap. That recur-
sive pair of rules hints at a recursive algorithm we can use to free up unneeded 
memory:
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1.	 Starting with the roots, traverse through object references to find the full set 
of reachable objects.

2.	 Free all objects not in that set.

Many different garbage collection algorithms are in use today, but they all 
roughly follow that same structure. Some may interleave the steps or mix them, 
but the two fundamental operations are there. They mostly differ in how they 
perform each step.

26.2 Mark-Sweep Garbage Collection
The first managed language was Lisp, the second “high-level” language to be 
invented, right after Fortran. John McCarthy considered using manual memory 
management or reference counting, but eventually settled on (and coined) gar-
bage collection—once the program was out of memory, it would go back and find 
unused storage it could reclaim.

He designed the very first, simplest garbage collection algorithm, called 
mark-and-sweep or just mark-sweep. Its description fits in three short para-
graphs in the initial paper on Lisp. Despite its age and simplicity, the same fun-
damental algorithm underlies many modern memory managers. Some corners 
of CS seem to be timeless.

As the name implies, mark-sweep works in two phases:

•	 Marking: We start with the roots and traverse or trace through all of the 
objects those roots refer to. This is a classic graph traversal of all of the 
reachable objects. Each time we visit an object, we mark it in some way. 
(Implementations differ in how they record the mark.)

•	 Sweeping: Once the mark phase completes, every reachable object in the 
heap has been marked. That means any unmarked object is unreachable and 
ripe for reclamation. We go through the unmarked objects and free each one.

It looks something like this:

That’s what we’re gonna implement. Whenever we decide it’s time to reclaim 
some bytes, we’ll trace everything and mark all the reachable objects, free what 
didn’t get marked, and then resume the user’s program.

If you want to explore other GC algo-
rithms, The Garbage Collection Handbook 
(Jones, et al.) is the canonical reference. 
For a large book on such a deep, narrow 
topic, it is quite enjoyable to read. Or 
perhaps I have a strange idea of fun.

In John McCarthy’s “History of Lisp”, he 
notes: “Once we decided on garbage 
collection, its actual implementation 
could be postponed, because only toy 
examples were being done.” Our choice 
to procrastinate adding the GC to clox 
follows in the footsteps of giants.

A tracing garbage collector is any 
algorithm that traces through the graph of 
object references. This is in contrast with 
reference counting, which has a different 
strategy for tracking the reachable 
objects.
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26.2.1 Collecting garbage

This entire chapter is about implementing this one function:

void* reallocate(void* pointer, size_t oldSize, size_t newSize);
void collectGarbage();
void freeObjects();

We’ll work our way up to a full implementation starting with this empty shell:

void collectGarbage() { 
}

The first question you might ask is, When does this function get called? It turns 
out that’s a subtle question that we’ll spend some time on later in the chapter. 
For now we’ll sidestep the issue and build ourselves a handy diagnostic tool in 
the process.

#define DEBUG_TRACE_EXECUTION
 
#define DEBUG_STRESS_GC
 
#define UINT8_COUNT (UINT8_MAX + 1)

We’ll add an optional “stress test” mode for the garbage collector. When this flag 
is defined, the GC runs as often as it possibly can. This is, obviously, horrendous 
for performance. But it’s great for flushing out memory management bugs that 
occur only when a GC is triggered at just the right moment. If every moment 
triggers a GC, you’re likely to find those bugs.

void* reallocate(void* pointer, size_t oldSize, size_t newSize) {
  if (newSize > oldSize) { 
#ifdef DEBUG_STRESS_GC 
    collectGarbage(); 
#endif 
  } 

  if (newSize == 0) {

Whenever we call reallocate() to acquire more memory, we force a collection 
to run. The if check is because reallocate() is also called to free or shrink an 
allocation. We don’t want to trigger a GC for that—in particular because the GC 
itself will call reallocate() to free memory.

Collecting right before allocation is the classic way to wire a GC into a VM. 
You’re already calling into the memory manager, so it’s an easy place to hook in 
the code. Also, allocation is the only time when you really need some freed up 
memory so that you can reuse it. If you don’t use allocation to trigger a GC, you 
have to make sure every possible place in code where you can loop and allocate 
memory also has a way to trigger the collector. Otherwise, the VM can get into a 
starved state where it needs more memory but never collects any.

Of course, we’ll end up adding a bunch of 
helper functions too.
memory.h
add after reallocate()

memory.c
add after freeObject()

common.h

memory.c
in reallocate()

More sophisticated collectors might run 
on a separate thread or be interleaved 
periodically during program execution—
often at function call boundaries or when 
a backward jump occurs.



504 CHAPTER 26 : Garbage Collection

26.2.2 Debug logging

While we’re on the subject of diagnostics, let’s put some more in. A real challenge 
I’ve found with garbage collectors is that they are opaque. We’ve been running 
lots of Lox programs just fine without any GC at all so far. Once we add one, how 
do we tell if it’s doing anything useful? Can we tell only if we write programs that 
plow through acres of memory? How do we debug that?

An easy way to shine a light into the GC’s inner workings is with some logging.

#define DEBUG_STRESS_GC
#define DEBUG_LOG_GC
 
#define UINT8_COUNT (UINT8_MAX + 1)

When this is enabled, clox prints information to the console when it does some-
thing with dynamic memory.

We need a couple of includes.

#include "vm.h"
 
#ifdef DEBUG_LOG_GC 
#include <stdio.h> 
#include "debug.h" 
#endif
 
void* reallocate(void* pointer, size_t oldSize, size_t newSize) {

We don’t have a collector yet, but we can start putting in some of the logging now. 
We’ll want to know when a collection run starts.

void collectGarbage() {
#ifdef DEBUG_LOG_GC 
  printf("-- gc begin\n"); 
#endif
}

Eventually we will log some other operations during the collection, so we’ll also 
want to know when the show’s over.

  printf("-- gc begin\n"); 
#endif
 
#ifdef DEBUG_LOG_GC 
  printf("-- gc end\n"); 
#endif
}

We don’t have any code for the collector yet, but we do have functions for allocat-
ing and freeing, so we can instrument those now.

common.h

memory.c

memory.c
in collectGarbage()

memory.c
in collectGarbage()
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  vm.objects = object;
 
#ifdef DEBUG_LOG_GC 
  printf("%p allocate %zu for %d\n", (void*)object, size, type); 
#endif 

  return object;

And at the end of an object’s lifespan:

static void freeObject(Obj* object) {
#ifdef DEBUG_LOG_GC 
  printf("%p free type %d\n", (void*)object, object->type); 
#endif 

  switch (object->type) {

With these two flags, we should be able to see that we’re making progress as we 
work through the rest of the chapter.

26.3 Marking the Roots
Objects are scattered across the heap like stars in the inky night sky. A reference 
from one object to another forms a connection, and these constellations are the 
graph that the mark phase traverses. Marking begins at the roots.

#ifdef DEBUG_LOG_GC 
  printf("-- gc begin\n"); 
#endif
 
  markRoots();
 
#ifdef DEBUG_LOG_GC

Most roots are local variables or temporaries sitting right in the VM’s stack, so 
we start by walking that.

static void markRoots() { 
  for (Value* slot = vm.stack; slot < vm.stackTop; slot++) { 
    markValue(*slot); 
  } 
}

To mark a Lox value, we use this new function:

void* reallocate(void* pointer, size_t oldSize, size_t newSize);
void markValue(Value value);
void collectGarbage();

object.c
in allocateObject()

memory.c
in freeObject()

memory.c
add after freeObject()

memory.h
add after reallocate()

memory.c
in collectGarbage()
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Its implementation is here:

void markValue(Value value) { 
  if (IS_OBJ(value)) markObject(AS_OBJ(value)); 
}

Some Lox values—numbers, Booleans, and nil—are stored directly inline in 
Value and require no heap allocation. The garbage collector doesn’t need to wor-
ry about them at all, so the first thing we do is ensure that the value is an actual 
heap object. If so, the real work happens in this function:

void* reallocate(void* pointer, size_t oldSize, size_t newSize);
void markObject(Obj* object);
void markValue(Value value);

Which is defined here:

void markObject(Obj* object) { 
  if (object == NULL) return; 
  object->isMarked = true; 
}

The NULL check is unnecessary when called from markValue(). A Lox Value 
that is some kind of Obj type will always have a valid pointer. But later we will 
call this function directly from other code, and in some of those places, the ob-
ject being pointed to is optional.

Assuming we do have a valid object, we mark it by setting a flag. That new 
field lives in the Obj header struct all objects share.

  ObjType type;
  bool isMarked;
  struct Obj* next;

Every new object begins life unmarked because we haven’t yet determined if it 
is reachable or not.

  object->type = type;
  object->isMarked = false;
 
  object->next = vm.objects;

Before we go any farther, let’s add some logging to markObject().

void markObject(Obj* object) { 
  if (object == NULL) return;
#ifdef DEBUG_LOG_GC 
  printf("%p mark ", (void*)object); 
  printValue(OBJ_VAL(object)); 
  printf("\n"); 
#endif 

  object->isMarked = true;

memory.c
add after reallocate()

memory.h
add after reallocate()

memory.c
add after reallocate()

object.h
in struct Obj

object.c
in allocateObject()

memory.c
in markObject()
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This way we can see what the mark phase is doing. Marking the stack takes care 
of local variables and temporaries. The other main source of roots are the global 
variables.

    markValue(*slot); 
  }
 
  markTable(&vm.globals);
}

Those live in a hash table owned by the VM, so we’ll declare another helper func-
tion for marking all of the objects in a table.

ObjString* tableFindString(Table* table, const char* chars, 
                           int length, uint32_t hash);
void markTable(Table* table);
 
#endif

We implement that in the “table” module here:

void markTable(Table* table) { 
  for (int i = 0; i < table->capacity; i++) { 
    Entry* entry = &table->entries[i]; 
    markObject((Obj*)entry->key); 
    markValue(entry->value); 
  } 
}

Pretty straightforward. We walk the entry array. For each one, we mark its 
value. We also mark the key strings for each entry since the GC manages those 
strings too.

26.3.1 Less obvious roots

Those cover the roots that we typically think of—the values that are obviously 
reachable because they’re stored in variables the user’s program can see. But the 
VM has a few of its own hidey-holes where it squirrels away references to values 
that it directly accesses.

Most function call state lives in the value stack, but the VM maintains a sepa-
rate stack of CallFrames. Each CallFrame contains a pointer to the closure being 
called. The VM uses those pointers to access constants and upvalues, so those 
closures need to be kept around too.

  }
 
  for (int i = 0; i < vm.frameCount; i++) { 
    markObject((Obj*)vm.frames[i].closure); 
  }
 
  markTable(&vm.globals);

memory.c
in markRoots()

table.h
add after tableFindString()

table.c
add after tableFindString()

memory.c
in markRoots()
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Speaking of upvalues, the open upvalue list is another set of values that the VM 
can directly reach.

  for (int i = 0; i < vm.frameCount; i++) { 
    markObject((Obj*)vm.frames[i].closure); 
  }
 
  for (ObjUpvalue* upvalue = vm.openUpvalues; 
       upvalue != NULL; 
       upvalue = upvalue->next) { 
    markObject((Obj*)upvalue); 
  }
 
  markTable(&vm.globals);

Remember also that a collection can begin during any allocation. Those alloca-
tions don’t just happen while the user’s program is running. The compiler itself 
periodically grabs memory from the heap for literals and the constant table. If 
the GC runs while we’re in the middle of compiling, then any values the compiler 
directly accesses need to be treated as roots too.

To keep the compiler module cleanly separated from the rest of the VM, we’ll 
do that in a separate function.

  markTable(&vm.globals);
  markCompilerRoots();
}

It’s declared here:

ObjFunction* compile(const char* source);
void markCompilerRoots();
 
#endif

Which means the “memory” module needs an include.

#include <stdlib.h> 

#include "compiler.h"
#include "memory.h"

And the definition is over in the “compiler” module.

void markCompilerRoots() { 
  Compiler* compiler = current; 
  while (compiler != NULL) { 
    markObject((Obj*)compiler->function); 
    compiler = compiler->enclosing; 
  } 
}

memory.c
in markRoots()

memory.c
in markRoots()

compiler.h
add after compile()

memory.c

compiler.c
add after compile()
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Fortunately, the compiler doesn’t have too many values that it hangs on to. The 
only object it uses is the ObjFunction it is compiling into. Since function declara-
tions can nest, the compiler has a linked list of those and we walk the whole list.

Since the “compiler” module is calling markObject(), it also needs an in-
clude.

#include "compiler.h"
#include "memory.h"
#include "scanner.h"

Those are all the roots. After running this, every object that the VM—runtime 
and compiler—can get to without going through some other object has its mark 
bit set.

26.4 Tracing Object References
The next step in the marking process is tracing through the graph of references 
between objects to find the indirectly reachable values. We don’t have instances 
with fields yet, so there aren’t many objects that contain references, but we do 
have some. In particular, ObjClosure has the list of ObjUpvalues it closes over as 
well as a reference to the raw ObjFunction that it wraps. ObjFunction, in turn, 
has a constant table containing references to all of the literals created in the 
function’s body. This is enough to build a fairly complex web of objects for our 
collector to crawl through.

Now it’s time to implement that traversal. We can go breadth-first, depth-
first, or in some other order. Since we just need to find the set of all reachable 
objects, the order we visit them mostly doesn’t matter.

26.4.1 The tricolor abstraction

As the collector wanders through the graph of objects, we need to make sure it 
doesn’t lose track of where it is or get stuck going in circles. This is particularly 
a concern for advanced implementations like incremental GCs that interleave 
marking with running pieces of the user’s program. The collector needs to be 
able to pause and then pick up where it left off later.

To help us soft-brained humans reason about this complex process, VM hack-
ers came up with a metaphor called the tricolor abstraction. Each object has a 
conceptual “color” that tracks what state the object is in, and what work is left 
to do.

•	  At the beginning of a garbage collection, every object is white. This color 
means we have not reached or processed the object at all.

•	  During marking, when we first reach an object, we darken it gray. This col-
or means we know the object itself is reachable and should not be collected. 
But we have not yet traced through it to see what other objects it references. In 
graph algorithm terms, this is the worklist—the set of objects we know about 
but haven’t processed yet.

compiler.c

I slotted this chapter into the book right 
here specifically because we now have 
closures which give us interesting objects 
for the garbage collector to process.

I say “mostly” because some garbage 
collectors move objects in the order 
that they are visited, so traversal order 
determines which objects end up adjacent 
in memory. That impacts performance 
because the CPU uses locality to 
determine which memory to preload into 
the caches.

Even when traversal order does matter, 
it’s not clear which order is best. It’s very 
difficult to determine which order objects 
will be used in in the future, so it’s hard 
for the GC to know which order will help 
performance.

Advanced garbage collection algorithms 
often add other colors to the abstraction. 
I’ve seen multiple shades of gray, 
and even purple in some designs. My 
puce-chartreuse-fuchsia-malachite 
collector paper was, alas, not accepted for 
publication.
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•	  When we take a gray object and mark all of the objects it references, we 
then turn the gray object black. This color means the mark phase is done pro-
cessing that object.

In terms of that abstraction, the marking process now looks like this:

1.	 Start off with all objects white.

2.	 Find all the roots and mark them gray.

3.	 Repeat as long as there are still gray objects:

1.	 Pick a gray object. Turn any white objects that the object mentions to gray.

2.	 Mark the original gray object black.

I find it helps to visualize this. You have a web of objects with references between 
them. Initially, they are all little white dots. Off to the side are some incoming 
edges from the VM that point to the roots. Those roots turn gray. Then each gray 
object’s siblings turn gray while the object itself turns black. The full effect is a 
gray wavefront that passes through the graph, leaving a field of reachable black 
objects behind it. Unreachable objects are not touched by the wavefront and stay 
white.

At the end, you’re left with a sea of reached, black objects sprinkled with islands 
of white objects that can be swept up and freed. Once the unreachable objects 
are freed, the remaining objects—all black—are reset to white for the next gar-
bage collection cycle.

26.4.2 A worklist for gray objects

In our implementation we have already marked the roots. They’re all gray. The 
next step is to start picking them and traversing their references. But we don’t 
have any easy way to find them. We set a field on the object, but that’s it. We don’t 
want to have to traverse the entire object list looking for objects with that field 
set.

Instead, we’ll create a separate worklist to keep track of all of the gray objects. 
When an object turns gray, in addition to setting the mark field we’ll also add it 
to the worklist.

  object->isMarked = true;
 
  if (vm.grayCapacity < vm.grayCount + 1) { 
    vm.grayCapacity = GROW_CAPACITY(vm.grayCapacity);

Note that at every step of this process 
no black node ever points to a white 
node. This property is called the tricolor 
invariant. The traversal process maintains 
this invariant to ensure that no reachable 
object is ever collected.

memory.c
in markObject()

continued on next page . . .
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    vm.grayStack = (Obj**)realloc(vm.grayStack, 
                                  sizeof(Obj*) * vm.grayCapacity); 
  } 

  vm.grayStack[vm.grayCount++] = object;
}

We could use any kind of data structure that lets us put items in and take them 
out easily. I picked a stack because that’s the simplest to implement with a 
dynamic array in C. It works mostly like other dynamic arrays we’ve built in 
Lox, except, note that it calls the system realloc() function and not our own 
reallocate() wrapper. The memory for the gray stack itself is not managed 
by the garbage collector. We don’t want growing the gray stack during a GC to 
cause the GC to recursively start a new GC. That could tear a hole in the space-
time continuum.

We’ll manage its memory ourselves, explicitly. The VM owns the gray stack.

  Obj* objects;
  int grayCount; 
  int grayCapacity; 
  Obj** grayStack;
} VM;

It starts out empty.

  vm.objects = NULL;
 
  vm.grayCount = 0; 
  vm.grayCapacity = 0; 
  vm.grayStack = NULL;
 
  initTable(&vm.globals);

And we need to free it when the VM shuts down.

    object = next; 
  }
 
  free(vm.grayStack);
}

We take full responsibility for this array. That includes allocation failure. If we 
can’t create or grow the gray stack, then we can’t finish the garbage collection. 
This is bad news for the VM, but fortunately rare since the gray stack tends to 
be pretty small. It would be nice to do something more graceful, but to keep the 
code in this book simple, we just abort.

    vm.grayStack = (Obj**)realloc(vm.grayStack, 
                                  sizeof(Obj*) * vm.grayCapacity);
 
    if (vm.grayStack == NULL) exit(1);
  }

vm.h
in struct VM

vm.c
in initVM()

memory.c
in freeObjects()

To be more robust, we can allocate a 
“rainy day fund” block of memory when 
we start the VM. If the gray stack alloca-
tion fails, we free the rainy day block and 
try again. That may give us enough wiggle 
room on the heap to create the gray stack, 
finish the GC, and free up more memory.
memory.c
in markObject()

. . . from previous page
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26.4.3 Processing gray objects

OK, now when we’re done marking the roots, we have both set a bunch of fields 
and filled our work list with objects to chew through. It’s time for the next phase.

  markRoots();
  traceReferences();
 
#ifdef DEBUG_LOG_GC

Here’s the implementation:

static void traceReferences() { 
  while (vm.grayCount > 0) { 
    Obj* object = vm.grayStack[--vm.grayCount]; 
    blackenObject(object); 
  } 
}

It’s as close to that textual algorithm as you can get. Until the stack empties, we 
keep pulling out gray objects, traversing their references, and then marking 
them black. Traversing an object’s references may turn up new white objects 
that get marked gray and added to the stack. So this function swings back and 
forth between turning white objects gray and gray objects black, gradually ad-
vancing the entire wavefront forward.

Here’s where we traverse a single object’s references:

static void blackenObject(Obj* object) { 
  switch (object->type) { 
    case OBJ_NATIVE: 
    case OBJ_STRING: 
      break; 
  } 
}

Each object kind has different fields that might reference other objects, so we 
need a specific blob of code for each type. We start with the easy ones—strings 
and native function objects contain no outgoing references so there is nothing 
to traverse.

Note that we don’t set any state in the traversed object itself. There is no di-
rect encoding of “black” in the object’s state. A black object is any object whose 
isMarked field is set and that is no longer in the gray stack.

Now let’s start adding in the other object types. The simplest is upvalues.

static void blackenObject(Obj* object) { 
  switch (object->type) {
    case OBJ_UPVALUE: 
      markValue(((ObjUpvalue*)object)->closed); 
      break;
    case OBJ_NATIVE:

When an upvalue is closed, it contains a reference to the closed-over value. Since 

memory.c
in collectGarbage()

memory.c
add after markValue()

An easy optimization we could do in 
markObject() is to skip adding 
strings and native functions to the gray 
stack at all since we know they don’t 
need to be processed. Instead, they could 
darken from white straight to black.

You may rightly wonder why we have the 
isMarked field at all. All in good time, 
friend.

memory.c
in blackenObject()

memory.c
add after markRoots()
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the value is no longer on the stack, we need to make sure we trace the reference 
to it from the upvalue.

Next are functions.

  switch (object->type) {
    case OBJ_FUNCTION: { 
      ObjFunction* function = (ObjFunction*)object; 
      markObject((Obj*)function->name); 
      markArray(&function->chunk.constants); 
      break; 
    }
    case OBJ_UPVALUE:

Each function has a reference to an ObjString containing the function’s name. 
More importantly, the function has a constant table packed full of references to 
other objects. We trace all of those using this helper:

static void markArray(ValueArray* array) { 
  for (int i = 0; i < array->count; i++) { 
    markValue(array->values[i]); 
  } 
}

The last object type we have now—we’ll add more in later chapters—is closures.

  switch (object->type) {
    case OBJ_CLOSURE: { 
      ObjClosure* closure = (ObjClosure*)object; 
      markObject((Obj*)closure->function); 
      for (int i = 0; i < closure->upvalueCount; i++) { 
        markObject((Obj*)closure->upvalues[i]); 
      } 
      break; 
    }
    case OBJ_FUNCTION: {

Each closure has a reference to the bare function it wraps, as well as an array of 
pointers to the upvalues it captures. We trace all of those.

That’s the basic mechanism for processing a gray object, but there are two 
loose ends to tie up. First, some logging.

static void blackenObject(Obj* object) {
#ifdef DEBUG_LOG_GC 
  printf("%p blacken ", (void*)object); 
  printValue(OBJ_VAL(object)); 
  printf("\n"); 
#endif 

  switch (object->type) {

This way, we can watch the tracing percolate through the object graph. Speaking 
of which, note that I said graph. References between objects are directed, but 
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in blackenObject()
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in blackenObject()

memory.c
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that doesn’t mean they’re acyclic! It’s entirely possible to have cycles of objects. 
When that happens, we need to ensure our collector doesn’t get stuck in an in-
finite loop as it continually re-adds the same series of objects to the gray stack.

The fix is easy.

  if (object == NULL) return;
  if (object->isMarked) return; 

#ifdef DEBUG_LOG_GC

If the object is already marked, we don’t mark it again and thus don’t add it to 
the gray stack. This ensures that an already-gray object is not redundantly added 
and that a black object is not inadvertently turned back to gray. In other words, it 
keeps the wavefront moving forward through only the white objects.

26.5 Sweeping Unused Objects
When the loop in traceReferences() exits, we have processed all the objects 
we could get our hands on. The gray stack is empty, and every object in the heap 
is either black or white. The black objects are reachable, and we want to hang on 
to them. Anything still white never got touched by the trace and is thus garbage. 
All that’s left is to reclaim them.

  traceReferences();
  sweep();
 
#ifdef DEBUG_LOG_GC

All of the logic lives in one function.

static void sweep() { 
  Obj* previous = NULL; 
  Obj* object = vm.objects; 
  while (object != NULL) { 
    if (object->isMarked) { 
      previous = object; 
      object = object->next; 
    } else { 
      Obj* unreached = object; 
      object = object->next; 
      if (previous != NULL) { 
        previous->next = object; 
      } else { 
        vm.objects = object; 
      } 

      freeObject(unreached); 
    } 
  } 
}

memory.c
in markObject()

memory.c
in collectGarbage()

memory.c
add after traceReferences()
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I know that’s kind of a lot of code and pointer shenanigans, but there isn’t much 
to it once you work through it. The outer while loop walks the linked list of 
every object in the heap, checking their mark bits. If an object is marked (black), 
we leave it alone and continue past it. If it is unmarked (white), we unlink it 
from the list and free it using the freeObject() function we already wrote.

Most of the other code in here deals with the fact that removing a node from a 
singly linked list is cumbersome. We have to continuously remember the previ-
ous node so we can unlink its next pointer, and we have to handle the edge case 
where we are freeing the first node. But, otherwise, it’s pretty simple—delete 
every node in a linked list that doesn’t have a bit set in it.

There’s one little addition:

    if (object->isMarked) {
      object->isMarked = false;
      previous = object;

After sweep() completes, the only remaining objects are the live black ones 
with their mark bits set. That’s correct, but when the next collection cycle starts, 
we need every object to be white. So whenever we reach a black object, we go 
ahead and clear the bit now in anticipation of the next run.

26.5.1 Weak references and the string pool

We are almost done collecting. There is one remaining corner of the VM that 
has some unusual requirements around memory. Recall that when we added 
strings to clox we made the VM intern them all. That means the VM has a hash 
table containing a pointer to every single string in the heap. The VM uses this to 
de-duplicate strings.

During the mark phase, we deliberately did not treat the VM’s string table as 
a source of roots. If we had, no string would ever be collected. The string table 

memory.c
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would grow and grow and never yield a single byte of memory back to the oper-
ating system. That would be bad.

At the same time, if we do let the GC free strings, then the VM’s string table 
will be left with dangling pointers to freed memory. That would be even worse.

The string table is special and we need special support for it. In particular, it 
needs a special kind of reference. The table should be able to refer to a string, 
but that link should not be considered a root when determining reachability. 
That implies that the referenced object can be freed. When that happens, the 
dangling reference must be fixed too, sort of like a magic, self-clearing pointer. 
This particular set of semantics comes up frequently enough that it has a name: 
a weak reference.

We have already implicitly implemented half of the string table’s unique be-
havior by virtue of the fact that we don’t traverse it during marking. That means 
it doesn’t force strings to be reachable. The remaining piece is clearing out any 
dangling pointers for strings that are freed.

To remove references to unreachable strings, we need to know which strings 
are unreachable. We don’t know that until after the mark phase has completed. 
But we can’t wait until after the sweep phase is done because by then the ob-
jects—and their mark bits—are no longer around to check. So the right time is 
exactly between the marking and sweeping phases.

  traceReferences();
  tableRemoveWhite(&vm.strings);
  sweep();

The logic for removing the about-to-be-deleted strings exists in a new function 
in the “table” module.

ObjString* tableFindString(Table* table, const char* chars, 
                           int length, uint32_t hash);
 
void tableRemoveWhite(Table* table);
void markTable(Table* table); 

The implementation is here:

void tableRemoveWhite(Table* table) { 
  for (int i = 0; i < table->capacity; i++) { 
    Entry* entry = &table->entries[i]; 
    if (entry->key != NULL && !entry->key->obj.isMarked) { 
      tableDelete(table, entry->key); 
    } 
  } 
}

We walk every entry in the table. The string intern table uses only the key of 
each entry—it’s basically a hash set not a hash map. If the key string object’s 
mark bit is not set, then it is a white object that is moments from being swept 
away. We delete it from the hash table first and thus ensure we won’t see any 
dangling pointers.

memory.c
in collectGarbage()

table.c
add after tableFindString()

This can be a real problem. Java does 
not intern all strings, but it does intern 
string literals. It also provides an API to 
add strings to the string table. For many 
years, the capacity of that table was fixed, 
and strings added to it could never be 
removed. If users weren’t careful about 
their use of String.intern(), they 
could run out of memory and crash.

Ruby had a similar problem for years 
where symbols—interned string-like 
values—were not garbage collected. Both 
eventually enabled the GC to collect these 
strings.

table.h
add after tableFindString()
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26.6 When to Collect
We have a fully functioning mark-sweep garbage collector now. When the stress 
testing flag is enabled, it gets called all the time, and with the logging enabled 
too, we can watch it do its thing and see that it is indeed reclaiming memory. But, 
when the stress testing flag is off, it never runs at all. It’s time to decide when the 
collector should be invoked during normal program execution.

As far as I can tell, this question is poorly answered by the literature. When 
garbage collectors were first invented, computers had a tiny, fixed amount of 
memory. Many of the early GC papers assumed that you set aside a few thousand 
words of memory—in other words, most of it—and invoked the collector when-
ever you ran out. Simple.

Modern machines have gigs of physical RAM, hidden behind the operating 
system’s even larger virtual memory abstraction, which is shared among a slew 
of other programs all fighting for their chunk of memory. The operating system 
will let your program request as much as it wants and then page in and out from 
the disc when physical memory gets full. You never really “run out” of memory, 
you just get slower and slower.

26.6.1 Latency and throughput

It no longer makes sense to wait until you “have to”, to run the GC, so we need a 
more subtle timing strategy. To reason about this more precisely, it’s time to in-
troduce two fundamental numbers used when measuring a memory manager’s 
performance: throughput and latency.

Every managed language pays a performance price compared to explicit, us-
er-authored deallocation. The time spent actually freeing memory is the same, 
but the GC spends cycles figuring out which memory to free. That is time not 
spent running the user’s code and doing useful work. In our implementation, 
that’s the entirety of the mark phase. The goal of a sophisticated garbage collec-
tor is to minimize that overhead.

There are two key metrics we can use to understand that cost better:

•	 Throughput is the total fraction of time spent running user code versus 
doing garbage collection work. Say you run a clox program for ten seconds 
and it spends a second of that inside collectGarbage(). That means the 
throughput is 90%—it spent 90% of the time running the program and 10% 
on GC overhead.

Throughput is the most fundamental measure because it tracks the to-
tal cost of collection overhead. All else being equal, you want to maximize 
throughput. Up until this chapter, clox had no GC at all and thus 100% 
throughput. That’s pretty hard to beat. Of course, it came at the slight expense 
of potentially running out of memory and crashing if the user’s program ran 
long enough. You can look at the goal of a GC as fixing that “glitch” while sac-
rificing as little throughput as possible.

•	 Latency is the longest continuous chunk of time where the user’s program 
is completely paused while garbage collection happens. It’s a measure of 
how “chunky” the collector is. Latency is an entirely different metric than 
throughput.

Consider two runs of a clox program that both take ten seconds. In the first 

Well, not exactly 100%. It did still put 
the allocated objects into a linked list, so 
there was some tiny overhead for setting 
those pointers.
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run, the GC kicks in once and spends a solid second in collectGarbage() 
in one massive collection. In the second run, the GC gets invoked five times, 
each for a fifth of a second. The total amount of time spent collecting is still 
a second, so the throughput is 90% in both cases. But in the second run, the 
latency is only 1/5th of a second, five times less than in the first.

If you like analogies, imagine your program is a bakery selling fresh-baked 
bread to customers. Throughput is the total number of warm, crusty baguettes 
you can serve to customers in a single day. Latency is how long the unluckiest 
customer has to wait in line before they get served.

Running the garbage collector is like shutting down the bakery temporarily 
to go through all of the dishes, sort out the dirty from the clean, and then wash 
the used ones. In our analogy, we don’t have dedicated dishwashers, so while this 
is going on, no baking is happening. The baker is washing up.

Selling fewer loaves of bread a day is bad, and making any particular cus-
tomer sit and wait while you clean all the dishes is too. The goal is to maximize 
throughput and minimize latency, but there is no free lunch, even inside a bak-
ery. Garbage collectors make different trade-offs between how much throughput 
they sacrifice and latency they tolerate.

Being able to make these trade-offs is useful because different user pro-
grams have different needs. An overnight batch job that is generating a report 
from a terabyte of data just needs to get as much work done as fast as possible. 
Throughput is queen. Meanwhile, an app running on a user’s smartphone needs 
to always respond immediately to user input so that dragging on the screen 
feels buttery smooth. The app can’t freeze for a few seconds while the GC mucks 
around in the heap.

As a garbage collector author, you control some of the trade-off between 
throughput and latency by your choice of collection algorithm. But even within 
a single algorithm, we have a lot of control over how frequently the collector runs.

Our collector is a stop-the-world GC which means the user’s program is 
paused until the entire garbage collection process has completed. If we wait a 
long time before we run the collector, then a large number of dead objects will 
accumulate. That leads to a very long pause while the collector runs, and thus 
high latency. So, clearly, we want to run the collector really frequently.

But every time the collector runs, it spends some time visiting live objects. 
That doesn’t really do anything useful (aside from ensuring that they don’t incor-

If each person represents a thread, 
then an obvious optimization is to 
have separate threads running garbage 
collection, giving you a concurrent 
garbage collector. In other words, hire 
some dishwashers to clean while others 
bake. This is how very sophisticated GCs 
work because it does let the bakers—the 
worker threads—keep running user code 
with little interruption.

However, coordination is required. You 
don’t want a dishwasher grabbing a bowl 
out of a baker’s hands! This coordination 
adds overhead and a lot of complexity. 
Concurrent collectors are fast, but 
challenging to implement correctly.

Clearly the baking analogy is going to my 
head.

In contrast, an incremental garbage 
collector can do a little collection, then 
run some user code, then collect a little 
more, and so on.

The bar represents the execution of a 
program, divided into time spent running 
user code and time spent in the GC. The 
size of the largest single slice of time 
running the GC is the latency. The size of 
all of the user code slices added up is the 
throughput.
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rectly get deleted). Time visiting live objects is time not freeing memory and also 
time not running user code. If you run the GC really frequently, then the user’s 
program doesn’t have enough time to even generate new garbage for the VM to 
collect. The VM will spend all of its time obsessively revisiting the same set of 
live objects over and over, and throughput will suffer. So, clearly, we want to run 
the collector really infrequently.

In fact, we want something in the middle, and the frequency of when the 
collector runs is one of our main knobs for tuning the trade-off between latency 
and throughput.

26.6.2 Self-adjusting heap

We want our GC to run frequently enough to minimize latency but infrequently 
enough to maintain decent throughput. But how do we find the balance between 
these when we have no idea how much memory the user’s program needs and 
how often it allocates? We could pawn the problem onto the user and force them 
to pick by exposing GC tuning parameters. Many VMs do this. But if we, the GC 
authors, don’t know how to tune it well, odds are good most users won’t either. 
They deserve a reasonable default behavior.

I’ll be honest with you, this is not my area of expertise. I’ve talked to a number 
of professional GC hackers—this is something you can build an entire career 
on—and read a lot of the literature, and all of the answers I got were . . . vague. 
The strategy I ended up picking is common, pretty simple, and (I hope!) good 
enough for most uses.

The idea is that the collector frequency automatically adjusts based on the live 
size of the heap. We track the total number of bytes of managed memory that 
the VM has allocated. When it goes above some threshold, we trigger a GC. After 
that, we note how many bytes of memory remain—how many were not freed. 
Then we adjust the threshold to some value larger than that.

The result is that as the amount of live memory increases, we collect less fre-
quently in order to avoid sacrificing throughput by re-traversing the growing 
pile of live objects. As the amount of live memory goes down, we collect more 
frequently so that we don’t lose too much latency by waiting too long.

The implementation requires two new bookkeeping fields in the VM.

  ObjUpvalue* openUpvalues;
 
  size_t bytesAllocated; 
  size_t nextGC;
  Obj* objects;

The first is a running total of the number of bytes of managed memory the VM 
has allocated. The second is the threshold that triggers the next collection. We 
initialize them when the VM starts up.

  vm.objects = NULL;
  vm.bytesAllocated = 0; 
  vm.nextGC = 1024 * 1024;
 
  vm.grayCount = 0;

vm.h
in struct VM

vm.c
in initVM()
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The starting threshold here is arbitrary. It’s similar to the initial capacity we 
picked for our various dynamic arrays. The goal is to not trigger the first few GCs 
too quickly but also to not wait too long. If we had some real-world Lox programs, 
we could profile those to tune this. But since all we have are toy programs, I just 
picked a number.

Every time we allocate or free some memory, we adjust the counter by that 
delta.

void* reallocate(void* pointer, size_t oldSize, size_t newSize) {
  vm.bytesAllocated += newSize - oldSize;
  if (newSize > oldSize) {

When the total crosses the limit, we run the collector.

    collectGarbage(); 
#endif
 
    if (vm.bytesAllocated > vm.nextGC) { 
      collectGarbage(); 
    }
  }

Now, finally, our garbage collector actually does something when the user runs a 
program without our hidden diagnostic flag enabled. The sweep phase frees ob-
jects by calling reallocate(), which lowers the value of bytesAllocated, 
so after the collection completes, we know how many live bytes remain. We 
adjust the threshold of the next GC based on that.

  sweep();
 
  vm.nextGC = vm.bytesAllocated * GC_HEAP_GROW_FACTOR;
 
#ifdef DEBUG_LOG_GC

The threshold is a multiple of the heap size. This way, as the amount of memory 
the program uses grows, the threshold moves farther out to limit the total time 
spent re-traversing the larger live set. Like other numbers in this chapter, the 
scaling factor is basically arbitrary.

#endif
 
#define GC_HEAP_GROW_FACTOR 2
 
void* reallocate(void* pointer, size_t oldSize, size_t newSize) {

You’d want to tune this in your implementation once you had some real pro-
grams to benchmark it on. Right now, we can at least log some of the statistics 
that we have. We capture the heap size before the collection.

  printf("-- gc begin\n");
  size_t before = vm.bytesAllocated;
#endif

A challenge with learning garbage 
collectors is that it’s very hard to 
discover the best practices in an isolated 
lab environment. You don’t see how a 
collector actually performs unless you run 
it on the kind of large, messy real-world 
programs it is actually intended for. It’s 
like tuning a rally car—you need to take it 
out on the course.
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memory.c
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memory.c
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And then print the results at the end.

  printf("-- gc end\n");
  printf("   collected %zu bytes (from %zu to %zu) next at %zu\n", 
         before - vm.bytesAllocated, before, vm.bytesAllocated, 
         vm.nextGC);
#endif

This way we can see how much the garbage collector accomplished while it ran.

26.7 Garbage Collection Bugs
In theory, we are all done now. We have a GC. It kicks in periodically, collects 
what it can, and leaves the rest. If this were a typical textbook, we would wipe 
the dust from our hands and bask in the soft glow of the flawless marble edifice 
we have created.

But I aim to teach you not just the theory of programming languages but the 
sometimes painful reality. I am going to roll over a rotten log and show you the 
nasty bugs that live under it, and garbage collector bugs really are some of the 
grossest invertebrates out there.

The collector’s job is to free dead objects and preserve live ones. Mistakes are 
easy to make in both directions. If the VM fails to free objects that aren’t needed, 
it slowly leaks memory. If it frees an object that is in use, the user’s program 
can access invalid memory. These failures often don’t immediately cause a crash, 
which makes it hard for us to trace backward in time to find the bug.

This is made harder by the fact that we don’t know when the collector will 
run. Any call that eventually allocates some memory is a place in the VM where 
a collection could happen. It’s like musical chairs. At any point, the GC might 
stop the music. Every single heap-allocated object that we want to keep needs to 
find a chair quickly—get marked as a root or stored as a reference in some other 
object—before the sweep phase comes to kick it out of the game.

How is it possible for the VM to use an object later—one that the GC itself 
doesn’t see? How can the VM find it? The most common answer is through a 
pointer stored in some local variable on the C stack. The GC walks the VM’s value 
and CallFrame stacks, but the C stack is hidden to it.

In previous chapters, we wrote seemingly pointless code that pushed an ob-
ject onto the VM’s value stack, did a little work, and then popped it right back 
off. Most times, I said this was for the GC’s benefit. Now you see why. The code 
between pushing and popping potentially allocates memory and thus can trigger 
a GC. We had to make sure the object was on the value stack so that the collector’s 
mark phase would find it and keep it alive.

I wrote the entire clox implementation before splitting it into chapters and 
writing the prose, so I had plenty of time to find all of these corners and flush 
out most of these bugs. The stress testing code we put in at the beginning of this 
chapter and a pretty good test suite were very helpful.

But I fixed only most of them. I left a couple in because I want to give you a 
hint of what it’s like to encounter these bugs in the wild. If you enable the stress 
test flag and run some toy Lox programs, you can probably stumble onto a few. 
Give it a try and see if you can fix any yourself.

memory.c
in collectGarbage()

Our GC can’t find addresses in the C stack, 
but many can. Conservative garbage 
collectors look all through memory, 
including the native stack. The most 
well-known of this variety is the Boehm–
Demers–Weiser garbage collector, 
usually just called the “Boehm collector”. 
(The shortest path to fame in CS is a last 
name that’s alphabetically early so that it 
shows up first in sorted lists of names.)

Many precise GCs walk the C stack 
too. Even those have to be careful about 
pointers to live objects that exist only in 
CPU registers.
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26.7.1 Adding to the constant table

You are very likely to hit the first bug. The constant table each chunk owns is a 
dynamic array. When the compiler adds a new constant to the current function’s 
table, that array may need to grow. The constant itself may also be some heap-al-
located object like a string or a nested function.

The new object being added to the constant table is passed to addConstant(). 
At that moment, the object can be found only in the parameter to that function 
on the C stack. That function appends the object to the constant table. If the table 
doesn’t have enough capacity and needs to grow, it calls reallocate(). That in 
turn triggers a GC, which fails to mark the new constant object and thus sweeps 
it right before we have a chance to add it to the table. Crash.

The fix, as you’ve seen in other places, is to push the constant onto the stack 
temporarily.

int addConstant(Chunk* chunk, Value value) {
  push(value);
  writeValueArray(&chunk->constants, value);

Once the constant table contains the object, we pop it off the stack.

  writeValueArray(&chunk->constants, value);
  pop();
  return chunk->constants.count - 1;

When the GC is marking roots, it walks the chain of compilers and marks each 
of their functions, so the new constant is reachable now. We do need an include 
to call into the VM from the “chunk” module.

#include "memory.h"
#include "vm.h"
 
void initChunk(Chunk* chunk) {

26.7.2 Interning strings

Here’s another similar one. All strings are interned in clox, so whenever we 
create a new string, we also add it to the intern table. You can see where this is 
going. Since the string is brand new, it isn’t reachable anywhere. And resizing 
the string pool can trigger a collection. Again, we go ahead and stash the string 
on the stack first.

  string->chars = chars; 
  string->hash = hash;
 
  push(OBJ_VAL(string));
  tableSet(&vm.strings, string, NIL_VAL);

And then pop it back off once it’s safely nestled in the table.

chunk.c
in addConstant()

chunk.c
in addConstant()

chunk.c

object.c
in allocateString()
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  tableSet(&vm.strings, string, NIL_VAL);
  pop(); 

  return string; 
}

This ensures the string is safe while the table is being resized. Once it survives 
that, allocateString() will return it to some caller which can then take 
responsibility for ensuring the string is still reachable before the next heap al-
location occurs.

26.7.3 Concatenating strings

One last example: Over in the interpreter, the OP_ADD instruction can be used to 
concatenate two strings. As it does with numbers, it pops the two operands from 
the stack, computes the result, and pushes that new value back onto the stack. 
For numbers that’s perfectly safe.

But concatenating two strings requires allocating a new character array on 
the heap, which can in turn trigger a GC. Since we’ve already popped the oper-
and strings by that point, they can potentially be missed by the mark phase and 
get swept away. Instead of popping them off the stack eagerly, we peek them.

static void concatenate() {
  ObjString* b = AS_STRING(peek(0)); 
  ObjString* a = AS_STRING(peek(1));
 
  int length = a->length + b->length;

That way, they are still hanging out on the stack when we create the result string. 
Once that’s done, we can safely pop them off and replace them with the result.

  ObjString* result = takeString(chars, length);
  pop(); 
  pop();
  push(OBJ_VAL(result));

Those were all pretty easy, especially because I showed you where the fix was. 
In practice, finding them is the hard part. All you see is an object that should be 
there but isn’t. It’s not like other bugs where you’re looking for the code that 
causes some problem. You’re looking for the absence of code which fails to prevent 
a problem, and that’s a much harder search.

But, for now at least, you can rest easy. As far as I know, we’ve found all of the 
collection bugs in clox, and now we have a working, robust, self-tuning, mark-
sweep garbage collector.

object.c
in allocateString()

vm.c
in concatenate()
replace 2 lines
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CHALLENGES

1.	 The Obj header struct at the top of each object now has three fields: type, 
isMarked, and next. How much memory do those take up (on your machine)? 
Can you come up with something more compact? Is there a runtime cost to 
doing so?

2.	 When the sweep phase traverses a live object, it clears the isMarked field to 
prepare it for the next collection cycle. Can you come up with a more efficient 
approach?

3.	 Mark-sweep is only one of a variety of garbage collection algorithms out there. 
Explore those by replacing or augmenting the current collector with another 
one. Good candidates to consider are reference counting, Cheney’s algorithm, 
or the Lisp 2 mark-compact algorithm.
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DESIGN NOTE: GENERATIONAL COLLECTORS

A collector loses throughput if it spends a long time re-visiting objects that are still 
alive. But it can increase latency if it avoids collecting and accumulates a large pile of 
garbage to wade through. If only there were some way to tell which objects were likely 
to be long-lived and which weren’t. Then the GC could avoid revisiting the long-lived 
ones as often and clean up the ephemeral ones more frequently.

It turns out there kind of is. Many years ago, GC researchers gathered metrics on 
the lifetime of objects in real-world running programs. They tracked every object when 
it was allocated, and eventually when it was no longer needed, and then graphed out 
how long objects tended to live.

They discovered something they called the generational hypothesis, or the much 
less tactful term infant mortality. Their observation was that most objects are very 
short-lived but once they survive beyond a certain age, they tend to stick around quite 
a long time. The longer an object has lived, the longer it likely will continue to live. This 
observation is powerful because it gave them a handle on how to partition objects into 
groups that benefit from frequent collections and those that don’t.

They designed a technique called generational garbage collection. It works like 
this: Every time a new object is allocated, it goes into a special, relatively small region 
of the heap called the “nursery”. Since objects tend to die young, the garbage collector 
is invoked frequently over the objects just in this region.

Each time the GC runs over the nursery is called a “generation”. Any objects that 
are no longer needed get freed. Those that survive are now considered one generation 
older, and the GC tracks this for each object. If an object survives a certain number of 
generations—often just a single collection—it gets tenured. At this point, it is copied 
out of the nursery into a much larger heap region for long-lived objects. The garbage 
collector runs over that region too, but much less frequently since odds are good that 
most of those objects will still be alive.

Generational collectors are a beautiful marriage of empirical data—the observa-
tion that object lifetimes are not evenly distributed—and clever algorithm design that 
takes advantage of that fact. They’re also conceptually quite simple. You can think of 
one as just two separately tuned GCs and a pretty simple policy for moving objects 
from one to the other.

Nurseries are also usually managed 
using a copying collector which is faster 
at allocating and freeing objects than a 
mark-sweep collector.




